	U.		
TICN			14MDE11
USIN		[19] 中国 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	200

First Semester M.Tech. Degree Examination, Dec.2017/Jan.2018

Applied Mathematics

Time: 3 hrs.

Note: Answer any FIVE full questions.

The follow:

- Write short notes on the following:
 - i) Inherent error
- ii) Truncation error
- iii) Absolute error

iv) Percentage error iv) Relative error b. Prove that the differential equation of falling body like a parachutist is in the standard form

is
$$\frac{dv}{dt} + \left(\frac{c}{m}\right)v = g$$
. And also prove its solution is $V = \frac{g_m}{c}\left[1 - e^{-\left(\frac{c}{m}\right)t}\right]$ with initial condition $v = 0$ at $t = 0$.

a. Derive the iterative formula to find the root of equation f(x) = 0 by Newton-Raphson method. Hence find the root of $e^x \sin x - 1 = 0$.

b. Perform three iterations of the Muller method to find the smallest positive root of the equation $x^3 - 5x + 1 = 0$. (10 Marks)

Find the approximate value of $\int_{1-x}^{1} dx$ using (i) Trapezoidal rule and (ii) Simphson's rule.

Obtain a bound for the errors.

(10 Marks)

Find the first and second derivative of f(x) at x = 1.2 for the following data:

X	1.1	1.2)1.3	1.4	1.5
f(x)	1.3356	1.5095	1.6983	1.9043	2.1293

(10 Marks)

a. Solve the equations -2x-y-3z=3, 2x-3y+z=-13, 2x-3z=-11 using Cramer's

b. Apply Gauss Jordan method to solve the equations x + y + z = 9, 2x - 3y + 4z = 13, 3x + 4y + 5z = 40.

c. Solve the system of equations x + 2y + 3z = 5, 2x + 8y + 22z = 6 and 3x + 22y + 82z = -10using Cholesky method.

5 a. Determine the inverse of the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{pmatrix}$ using the partition method. Hence find the

solution of the system of equations x + y + z = 1, 4x + 3y - z = 6, 3x + 5y + 3z = 4.

b. Using the Jacobi method find all the eigen values and the corresponding eigen vectors of the

matrix,
$$A = \begin{pmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{pmatrix}$$
. (10 Marks)

14MDE11

6 a. Use Householder's method to reduce the given matrix A into the tridiagnol form

$$\begin{pmatrix} 4 & -1 & -2 & 2 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ 2 & -2 & -1 & 4 \end{pmatrix}.$$
 (10 Marks)

- b. Find all the eigen values of the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 3 & 2 \end{pmatrix}$ using the Rutishauser method. Iterate till the elements of the lower triangular part are less than 0.05 magnitude. (10 Marks)
- 7 a. Perform five iterations of the bisection method to obtain a root of the equation $\cos x xe^x = 0$. (06 Marks)
 - b. By using Regula-Falsi method, find the root of $x \log_{10} x = 1.2$ lies between 2 and 3. (07 Marks)
 - c. Find the largest eigen value and the corresponding eigen vector by power method for $\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ taking initial approximation $\begin{pmatrix} 1 & 1 \end{pmatrix}^T$. (07 Marks)
- 8 a. Find a least square solution of AX = b for

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{pmatrix}$$
 (10 Marks)

- b. Let π be the plane in \mathbb{R}^3 spanned by vectors (1, 2, 2) and (-1, 0, 2).
 - (i) Find an orthonormal basis for π .
 - (ii) Extend it to an orthonormal basis of R³.

(10 Marks)